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Origami, also known as paper folding, has shown its potential to construct 3D structures 
from designed crease patterns on a flat sheet. This paper proposes a method to design 
axisymmetric 3D origami with generic six-crease bases. Inspired by the conventional six-
crease bases, i.e., waterbomb base or Yoshimura base, where six regular crease lines meet 
at an interior vertex, we generalize the generic base so that the lengths of the crease 
lines can be regular or irregular. This method is based on designing the crease patterns. 
First, we interactively generate a crease pattern consisting of such generic bases. Then, our 
method analytically calculates the 3D origami shape with an axisymmetric structure. We 
demonstrate various configurations, i.e., sets of input parameters, to explore the variations 
of the calculated 3D origami. The 3D origami can have multiple degrees of freedom, but 
by continually changing one parameter we present a motion that can axisymmetrically 
deploy or flatten the shape. The method for designing 3D origami has potential applications 
ranging from self-folding tessellations to deployable architectures.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Origami, also known as paper folding, has received much attention in geometry, mathematics, and engineering. An 
origami (e.g., Fig. 1 (b)) can be defined by its crease pattern (e.g., Fig. 1 (a)), which contains a set of mountain folded 
lines (shown in red) and valley folded lines (shown in blue) appearing on a sheet of paper when the origami is opened flat 
(Mitani, 2011a).

Among the crease patterns, a waterbomb pattern (Fig. 1 (a)) and Yoshimura pattern (Fig. 1 (c)) with interior vertices 
having six-crease lines are widely used and have been widely researched. For a waterbomb pattern, Tachi et al. (2012)
worked on the rigidity of a six-crease origami tessellation to achieve an adaptive freeform surface. Kuribayashi et al. (2006)
made the first origami stent to achieve a large deployable ratio. Based on such pattern, a worm robot (Onal et al., 2013) and 
a deformable wheel robot (Lee et al., 2013) were also proposed. Chen et al. (2016) proposed a comprehensive kinematic 
analysis on a waterbomb origami with one degree of freedom (DOF) motion under symmetric folding.

A Yoshimura pattern, also known as the diamond pattern (Yoshimura, 1951; Hunt et al., 2003; Thompson et al., 
1985) is another crease pattern with interior vertices having six-crease lines. For this pattern, Foster and Krishnakumar
(1987) proposed a family of foldable structures. De Temmerman et al. (2007) proposed a concept for a mobile shelter.
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Fig. 1. Origami with interior vertices having six-crease lines. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

Fig. 2. Overview of our method.

Thrall and Quaglia (2014) gave a historical review of origami-like deployable shelters developed by the US military. Cai 
et al. (2016) investigated the motion of the foldable barrel vault structure based on the regular and irregular Yoshimura 
pattern.

In this paper, inspired by the six-crease base, which we can be seen from the waterbomb pattern and Yoshimura pattern 
where six regular crease lines meet at a vertex, we present our generalization of the base, enabling the lengths of the 
crease lines to be regular or irregular. This method is based on designing the crease patterns. First, we interactively generate 
a crease pattern consisting of such generic bases (Fig. 2 (a)). Then, our method analytically calculates the 3D origami shape 
with an axisymmetric structure (Fig. 2 (b)). Finally, while referring to the shape of the 3D origami, the user can fabricate 
the 3D origami piece (Fig. 2 (d)).

Rigidly foldable origami allows for motion where all facets remain rigid, and deflection only occurs at the crease lines. 
A rigidly foldable origami can be made of thick materials other than paper. 3D origami consisting of triangular facets has 
multiple DOFs (Tachi, 2010a), but by continually changing one parameter we present a motion that can axisymmetrically 
deploy or flatten the shape around the z axis (Fig. 2 (c)). The designed 3D origami has potential applications ranging from 
self-folding tessellations to deployable architectures.

2. Related work

Origami has advanced significantly based on the development of mathematical theories and more computational re-
sources (Wang-Iverson et al., 2016; Demaine and O’Rourke, 2007). T reeMaker is software used to design flat-foldable 
origami (Lang, 2016). Its basic concept was first introduced by Meguro (1991) and fully described by Lang (1996). This 
software generates the crease pattern from a graph tree that represents the base structure of the object by using a cir-
cle/river packing technique. Tess is another computer program that makes crease patterns for origami tessellations involving 
twist folds in a repeating pattern (Bateman, 2016). These approaches focus on flat-foldable origami, but we are aiming at 
making 3D origami.

The Origamizer algorithm by Tachi (2010b) is a very general approach that generates a crease pattern for an arbitrary 
3D triangle mesh model with a topological disc condition. The approach is based on the tucking technique, which hides 
the unnecessary areas of a sheet of paper inside the shape. Although the Origamizer can handle axisymmetric origami, the 
generated crease pattern might be over complicated for a simple model.

Mitani proposed a method for designing 3D origami based on a rotational sweep (Mitani, 2009, 2011b), which gener-
ates a simpler crease pattern for an axisymmetric structure by adding flaps outside of the target shape. Although the flaps 
might be considered obtrusive, his method succeeds in generating 3D curved origami. His other method (Mitani, 2012), 
which combines the advantages of the rotational sweep and mirror reflection approaches, has been used to build geometri-
cally attractive origami pieces. Even though these methods can handle the axisymmetric structure of origami, they cannot 
adequately handle axisymmetric 3D origami consisting of triangular facets.
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Fig. 3. Designing crease pattern.

Zhao et al. (2017) proposed a method to handle a family of axisymmetric 3D origami consisting of triangular facets. This 
method first designs a rotationally-symmetric crease pattern and then calculates the axisymmetric 3D shape of the origami 
based on geometric constraints. In this paper, we propose a new method to calculate the axisymmetric 3D origami based 
on a mirror-symmetric crease pattern.

Dudte et al. (2016) worked on generalized Miura-ori tessellations. This method constructs tessellations for surfaces of 
negative, positive, and mixed Gaussian curvature. Schenk and Guest (2012) considered a ‘global’ Gaussian curvature of an 
equivalent mid-surface of the Miura and Eggbox sheets. They found that both sheets can modify their global Gaussian 
curvature, with no stretching at the material level. On the application side, Zirbel et al. (2013, 2015) proposed a method 
to build a large solar array for space applications. Filipov et al. (2016) proposed a class of origami tubes. The 3D origami 
proposed by Zhao et al. (2017) could be applied to build an origami dome.

3. Designing 3D origami

3.1. Designing crease pattern

In this section, we describe the crease pattern made using generic six-crease bases. Fig. 3 (a) shows a 1/N part of 
the crease pattern (where N indicates the order of rotational symmetry and equals 10 in this example), (b) shows the 
corresponding part in 3D space. pi(i = 1, 2, 3, ...) denote the points in the 2D crease pattern, and Pi(i = 1, 2, 3, ...) indicate 
the corresponding points in 3D space. l1 and l2 are two parallel lines. pi (with odd indices) lie on line l1 and pi (with 
even indices) lie on line l2. p′

i (with even indices) are the symmetric points of pi with respect to line l1. The crease pattern 
can be interactively designed. Specifically, we can adjust the space between lines l1 and l2. We can also move, add, and 
delete pi along lines l1 or l2. For a newly added pi(i > 2), we place crease lines pi pi−1 and pi pi−2, to guarantee that all 
interior points have valence six. After the 1/N part of the crease pattern is specified, we generate the whole crease pattern 
by repeating the 1/N part N times (Fig. 3 (c)).

Fig. 3 (b) illustrates the overall layout of the pattern in 3D space. O is the origin of a Cartesian coordinate system. �1
is a vertical plane passing through the z axis and y axis. �2 is another vertical plane passing through the z axis. �, which 
equals 180◦/N , is an angle between such two vertical planes. Pi (with odd indices) lie on the plane �1 and Pi (with even 
indices) lie on the plane �2. P ′

i and Pi (with even indices) are symmetric with respect to plane �1. After the 1/N part of 
the 3D origami is calculated, we achieve the axisymmetric 3D origami by iteratively rotating its 1/N part about the z axis.

We also introduce a parameter T to represent the number of editable points in the 1/N part of the crease pattern 
(e.g., T = 9 in Fig. 3 (a)). Note that every interior vertex having six crease lines has a mirror-symmetric property. We can 
make the six crease lines of the interior vertex irregular (e.g., |p3 p1| �= |p3 p5| and |p3 p2| �= |p3 p4| at p3) because pi are 
interactively moved in the crease pattern. Using such a crease pattern consisting of regular or irregular six-crease bases, we 
can generate novel 3D origami (e.g., the origami pieces shown in Fig. 12).

3.2. Calculation of each 3D point

In this section, we take the generated 1/N part of the crease pattern (shown in Fig. 3(a)) as input and describe a method 
to calculate each point on 3D origami based on geometric constraints. Pi is calculated sequentially in the order of its index. 
First, we use Eq. (1) to define P1 on the plane �1 (Fig. 4 (b)).
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Fig. 4. Determination of P1.

Fig. 5. Calculation of P2.

P1 = (0, L sin(ϕ), L cos(ϕ)), (1)

where L indicates the length of |O P1| and ϕ represents the angle between O P1 and the z axis. As shown in Fig. 4, ϕ is set 
as 58◦ for generating (a). V is the foot of the perpendicular from P1 to the z axis.

Next, we calculate the 3D coordinates of P2 based on the following constraints: (i) the distance between P2 and P1
should be the same as |p2 p1| in the crease pattern, (ii) P2 should lie on the plane �2. To satisfy these two constraints, we 
achieve candidates for P2, which are gathered on the solution circle shown in red, the center of which is represented as 
C2 (Fig. 5 (a) and (b)). To achieve one solution of P2, we introduce a parameter denoted as β , which is the angle between 
C2 P2 and the z axis. By specifying the angle β ranging from 0◦ to 360◦ , we can obtain various P2, as examples shown in 
Fig. 5 (a) and (b), where β equals 0◦ and 90◦ , respectively. The solution circle shown in red is an intersection of the plane 
�2 and a sphere, the center of which is P1 and the radius of which equals |p1 p2|. Here, we introduce an upper bound 
of L as Lb , when the solution circle degenerates to one point C2 (Fig. 5 (c)). Lb can be defined as Eq. (2) in right triangle 
O V P1.

Lb = |V P1|
sin(ϕ)

. (2)

Meanwhile, |V P1| is defined as Eq. (3) in right triangle V P2 P1.

|V P1| = |P1 P2|
sin(�)

. (3)

By substituting Eq. (3) for Eq. (2), we can obtain Lb in Eq. (4):
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Fig. 6. Calculation of Pi (i > 2), where i = 5.

Lb = |P1 P2|
sin(�) sin(ϕ)

= |p1 p2|
sin(180◦/N) sin(ϕ)

. (4)

Note that |p1 p2| and N are given by the crease pattern, and thus for a given crease pattern Lb is related to another 
input ϕ .

Next, we calculate the 3D coordinates of Pi (i > 2) based on the following constraints: (i) the distance between Pi and 
Pi−1 should be the same as |pi pi−1| in the crease pattern, (ii) the distance between Pi and Pi−2 should be the same as 
|pi pi−2| in the crease pattern, (iii) Pi should lie on the plane �1 (for an odd index) or �2 (for an even index).

We set i = 5 and describe the calculation of P5 (Fig. 6). P5 lies on the plane �1 and is connected to P4 and P3. First, by 
considering the distance constraint between P5 and P4, we achieve the candidates that are gathered on the circle shown 
in green. Second, by considering the distance constraint between P5 and P3, we obtain the candidates that are gathered on 
the circle shown in red. Finally, two intersection points between the two circles (the red one and the green one) that satisfy 
all the constraints at the same time are selected as two candidates for P5 (if they exist). Our system gives feedback when 
no candidates achieved and allows us to select when two candidates exist. By selecting either of them, we can generate 
different shapes of 3D origami (Fig. 6 (a) and (b)). After all Pi and P ′

i (with even indices) are calculated, we achieve the 
1/N part of the 3D origami. Then, by iteratively rotating such 3D part about the z axis, we can obtain the resultant shape 
of 3D origami (Fig. 4 (a)). Finally, based on the generated 3D model, we determine the mountain and valley assignments on 
its crease pattern (Fig. 3 (c)).

The space of 3D origami consisting of triangular facets could be very rich. For a calculated 3D origami (whose crease 
pattern and choices for selecting 3D candidates are determined), we explore its variations by changing parameters ϕ , L, and 
β in the discrete domain. We refer to a set of ϕ , L, and β as a configuration. We set a range of ϕ from 0◦ to 180◦ without 
0◦ and 180◦ , because we cannot achieve Lb when ϕ equals such two values. L ranges from 0 to Lb for a given ϕ (Eq. (4)). 
The value of β ranges from 0◦ to 360◦ .

Here, for the 3D origami shown in Fig. 12 (a), we demonstrate various configurations as points (Fig. 7 (a)) that represent 
3D origami pieces achievable without self-intersections. The crease pattern and choices for selecting 3D candidates are 
remained during the exploration. To normalize L, we introduce Lmax , found in the experiment, which indicates the maximum 
of L that exists at least one configuration for generating achievable 3D origami. Specifically, we demonstrate 18 samples 
(Fig. 7 (b), (c), and (d)) and their corresponding 3D shapes (Fig. 7 (e)). We achieve 3D shapes from #1 to #6 by increasing 
ϕ from 21◦ to 86◦ while keeping L and β remained as 2.56e-2 Lmax and 36◦ , respectively. By increasing L from 0.95e-2 
Lmax to 3.34e-2 Lmax , we achieve 3D shapes from #7 to #12, where ϕ and β are fixed as 106◦ and 36◦ , respectively. We 
can also achieve 3D shapes from #13 to #18, by increasing β from 157◦ to 167◦ while keeping ϕ and L remained as 61◦
and 2.59e-2 Lmax , respectively.

4. Motion analysis

In this section, we describe an along-circumference flat-folding, which is triggered by parameter �, the angle between 
planes �1 and �2.

4.1. Calculation of degree of freedom

The degrees of freedom of a triangular mesh are represented as Eq. (5)

D O F = NEo − 3NL − 3, (5)
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Fig. 7. Variations in 3D origami by changing configuration.
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Fig. 8. Satisfaction of Kawasaki’s theorem for each interior vertex.

Fig. 9. Along-circumference flat-folding with self-intersection-free test.

where NEo is the number of edges on the boundary, and NL is the number of holes (Tachi, 2010a). In our work, NEo is 
represented by Eq. (6)

NEo = 4N + 2(

⌊
T

2

⌋
− 1), (6)

where N indicates the order of rotational symmetry, and T represents the number of editable points in the 1/N part of the 
crease pattern. In addition, NL equals zero, thus the degrees of freedom in our work are represented as

D O F = 4N + 2(

⌊
T

2

⌋
− 1) − 3. (7)

According to Eq. (7), the 3D origami in Fig. 8 (a) has 43 DOFs (N = 10 and T = 9).
Within those DOFs, we can axisymmetrically flat fold the 3D origami with decreasing angle �. Specifically, Pi (with 

even indices) on plane �2 together with the symmetric P ′
i fall towards plane �1 with decreasing � (represented as �′ , 

0◦ ≤ �′ ≤ �, in Fig. 8 (a)). For the whole origami, such a process compresses the 3D shape towards plane �1. Meanwhile, 
the 3D origami is locally flat-foldable based on the satisfaction of Kawasaki’s theorem (Kawasaki, 1989). Kawasaki’s theorem 
provides a necessary criterion for an origami construction to be flat, which states that a collection of creases meeting at a 
vertex are flat-foldable if and only if the sum of the alternate angles around the vertex is 180◦ . Here, we show the interior 
vertices p5 and p6 (Fig. 8 (b) and (c)), for which the 3D points P5 and P6 are convex and concave, respectively. Angle αi,k
denotes the k−th incident sector angle of pi . For p5, because α5,1 = α5,6, α5,2 = α5,5, and α5,3 = α5,4, α5,1 + α5,3 + α5,5 =
α5,2 + α5,4 + α5,6 = 180◦ , satisfying Kawasaki’s theorem. Similarly, we can show that p6 also satisfies Kawasaki’s theorem 
(Fig. 8 (c)). In general, interior vertices satisfy Kawasaki’s theorem because they have a mirror-symmetric property.

To intuitively describe the folding state due to angle �′ , we introduce a folding rate:

F R = 100(1 − �′

�
)%. (8)

Fig. 9 shows the along-circumference flat-folding where the folding rate equals 0%, 20%, 40%, 60%, 80%, and 100% corre-
sponding to (a), (b), (c), (d), and (f), respectively. The origami remains rigid in this folding sequence, which is triggered 
by continually changing �′ . Self-intersections could occur during the motion. Here, we enumerate the folded 3D shapes 
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Fig. 10. Kinematic behavior of P5.

Fig. 11. Kinematic behavior of P6.

based on �′ , ranging from � to 0◦ in the discrete domain with dense sampling. The folding sequence is considered as 
self-intersection-free when none of the enumerated 3D shapes has self-intersections.

4.2. Kinematic behavior

We analyzed the kinematic behavior of the vertices in a designed 3D origami during motion. For the origami shown in 
Fig. 8 (a), without loss of generality, we selected a convex P5 that has four mountain and two valley folded lines and a 
concave P6 that has two mountain and four valley folded lines for analysis. We introduced angle φi,k indicating the k−th 
dihedral angle at vertex Pi , and k is started from one and assigned clockwise (Fig. 10 (a) and Fig. 11 (a)). The relationship 
between the folding rate and dihedral angles at selected vertices P5 and P6 during motion are illustrated in Fig. 10 (b) and 
Fig. 11 (b), respectively.

The maximum dihedral angles at P5 are 119◦ , 104◦ , 111◦ , and 76◦ corresponding to φ5,1, φ5,2, φ5,3, and φ5,4, re-
spectively. For P6, the maximum dihedral angles are 129◦ , 111◦ , 98◦ , and 94◦ corresponding to φ6,1, φ6,2, φ6,3, and φ6,4, 
respectively. The knowledge of these maximum dihedral angles helped us to build a rigid origami structure with double 
layered thick composite panels because it is a factor to avoid collision between panels (Tachi, 2010a). In addition, based 
on the kinematic analysis during motion, we could control the dihedral angles by setting actuators to build self-folding 
tessellations or deployable architectures.

5. Results

We show several resulting origami pieces in Figs. 12 and 13, where the first column shows the crease patterns, the 
second column shows the 3D models, and the third column shows the photo of the origami pieces. Fig. 12 shows (a) a can-
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Fig. 12. Resulting origami pieces with different ‘global’ Gaussian curvature.

dlestick with a negative global Gaussian curvature, (b) a rugby ball with a positive global Gaussian curvature, and (c) a vase 
with a curved base having a positive global Gaussian curvature and a curved neck having a negative global Gaussian curva-
ture. Here, our interest lies in the macroscopic behavior of the sheets, and thus we consider the global Gaussian curvature 
(Schenk and Guest, 2012) of an equivalent mid-surface of the folded sheet.

Fig. 13 shows (a) a lampshade and (b) a bud. P1 in both of them lie on the symmetric axis. (c) shows another bud, and 
(d) and (e) show a ball and a cup, respectively. We achieved the folding sequences shown in Fig. 14. Note that P1 stays on 
the symmetric axis during motion in Fig. 14 (a).

For the 3D origami having self-intersections during the motion, we manually modified the design. Here, we take the 3D 
origami shown in Fig. 15 (a) as an example. We can see that the facets shown in red penetrated each other (Fig. 15 (b)). In 
addition, from Fig. 15 (c) showing the relationship between the folding rate and dihedral angles at vertex P5, we note that 
the folding motion is interrupted by self-intersections when the folding rate is larger than 46%. For the origami shown in 
Fig. 15 (a), we adjust its vertices in crease pattern to achieve the shape shown in Fig. 16 (a). The modified one can be flat 
folded without self-intersections (Fig. 16 (b) and (c)).

6. Conclusion

We described a design method for a class of axisymmetric 3D origami with generic six-crease bases, for which the 
lengths of the crease lines can be regular or irregular. First, we interactively generate a crease pattern consisting of such 
generic bases. Then, our method analytically calculates the 3D origami shape with an axisymmetric structure. We demon-
strated various configurations to explore the variations of the calculated 3D origami.

We described an along-circumference flat-folding to flat fold the 3D origami axisymmetrically by continually changing 
parameter �, the angle between planes �1 and �2. First, we described the calculation of DOF and the folding process 
triggered by changing �. We also showed that the 3D origami is locally flat-foldable based on the satisfaction of Kawasaki’s 
theorem for each interior vertex pi . Finally, we analyzed the kinematic behavior by illustrating the relationship between 
the folding rate and dihedral angles at selected vertices on 3D origami. Several origami pieces and folding sequences are 
presented to demonstrate the validity.

In the future, for 3D origami having self-intersections, we want to automatically revise them as little as possible. On the 
application side, we intend to build self-folding tessellations or deployable architectures with actuators and thick panels. 
Furthermore, we hope this work can be extended to create more complex structures by assembling the axisymmetric 3D 
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Fig. 13. Resulting origami pieces.

Fig. 14. Folding sequences with self-intersection-free test.
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Fig. 15. Self-intersections occur during folding motion.

Fig. 16. Modification to enable the origami be flat folded.

origami, and lead us to solve the inverse-origami-design problem, which is to approximate target surfaces of constant or 
varying curvature using the generic six-crease bases.
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